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Part 1: A personal story

How our lab became interested in antibodies



The lab

Shunsuke Songling




In 2013 my lab was invited to join a contest

The second antibody modeling
assessment:

“TO assess the state of the artin
antibody 3D modeling”



Organization of the Contest

N

Participants prepare 3D
models and send back
to organizers

'

Organizers send
sequences of
antibodies to
participants

Organizers compare the
3D models to x-ray
crystal structures and
assess errors




The participants

e Accerlys Inc

* Chemical Computer Group (CCG)

e Schrodinger, Inc.

e Jeff Gray's lab (John Hopkins University)
 Macromoltek

e Astellas Pharma/Osaka University

e Prediction of ImmunoGlobulin Structure (PIGS).



The organizers

a

Academics

)

Scripps Research




Our team

Haruki

Inst. PYotein Research

D. Standley

Hiroki Shirai
Astellas Pharma IFReC
Osaka Univ.

Experienced in antibody modeling



Our strategy

Nakamura Lab: Molecular dynamics

(Slow, but reliable)

Hiroki Shirai: Initial
analysis
of BCR sequence

Choose best
model

D. Standley: Fragment assembly

(Fast, but risky)

We wrote the software in 1 month!



Results: Our models had the lowest error!

Astellas/Osaka JRosetta Schrodinger Macromoltek Accelrys CCG
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It turned out the fast/risky approach was just as accurate as the slow approach

APPLICATIONS NOTE " %5 ositbismomatice 10

Structural bioinformatics Advance Access publication July 26, 2014

Kotai Antibody Builder: automated high-resolution structural
modeling of antibodies

Kazuo Yamashita', Kazuyoshi lkeda?, Karlou Amada', Shide Liang', Yuko Tsuchiya?,
Haruki Nakamura®, Hiroki Shirai* and Daron M. Standley'*
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We should make a
compahy!

Kazuo Yamashita
CEO KOTAI Bio




Summary of part 1

« The AMA-II contest provided an important lesson

e Our lab had no experience working on antibody modeling

 Nevertheless, we were able to make an important breakthrough

 Why did we do so well on antibody modeling?

e Possibly, because were not antibody ‘experts’ we tried something very
naive

e [t just happened to work.

e [t's important to try different projects in your career

e Don’t become too attached to one project for your whole life
e Some projects “just happen to work” most projects don't!




Part 2: Background on antibodies



How does nature make antibodies?”

Antigen

@

B cells with unique B cell receptors (BCRs)

s o ¢ @

One or more of these BCRs will bind to the antigen of intere:

Antibodies are the soluble form of BCRs Y




-ach antibody variable region (Fab) is composed of
two chains (heavy and light)

- ~

Fab



A Fab contains 6 complementarity-determining regions (CDRs)

L1L2L3 H3H2H1

These six CDR loops give each
antibody its unque antigen-binding
characteristics



Antigen binding surfaces (paratopes) are defined by CDRs




CDR sequences are generated randomly

This is a continuous process ocurring
throughout our lives



The number of unique antibodies in humans is greater than the number
grains of sand on earth: ~10%°







Antibody binding sites (epitopes) can be
anywhere on an antigen surface

Different antibodies targeting
influenza hemagglutinin



Paratopes correspond to CDRs
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B cells that bind self-molecules are killea

95% of B cells are killed
because of self-
reactivity




Surviving B cells tha

“ bind non-self molecules
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Some cells become long-lived memory B cells
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B cell sequencing is an emerging technology

10X Genomics Inc
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Era of too little data Era of too much data




Traditional therapeutic antibody discovery takes time

 |dentify target antigen

e Develop antibodies in animals

 Select several monoclonal antibodies

e Humanize (i.e. graft CDRs from animal framework onto human framework)
e Optimize antigen binding etc.

e Evaluate safety

e Evaluate efficacy



Two important examples from Japanese academia

Tasuku Honjo, Kyoto University Tadamitsu Kishimoto, Osaka University
Discovered PD-1 cancer checkpoint therapy Discovered IL6-based autoimmune therapy



Commercialization:
Global sales of checkpoint-therapies
(2014-2018)

Invention:
PD-1 discovery (1992)

The EMBO Journal vol.11 no.11 pp.3887 - 3895, 1992
- A ETra L ere |_II "rl'.-'

Induced expression of PD-1, a novel member of the B Roche / Tecentriq

immunoglobulin gene superfamily, upon programmed

cell death

Yasumasa Ishida, Yasutoshi Agata,
Keiichi Shibahara and Tasuku Honjo'
Department of Medical Chemistry, Kyoto University Faculty of
Medicine, Yoshida, Sakyo-ku, Kyoto 606, Japan
ICorresponding author

Communicated by J.Tooze

The classical type of programmed cell death is
characterized by its dependence on de nove RNA and
protein synthesis and morphological features of apoptosis.
We confirmed that stimulated 2B4.11 (a murine T-cell

hybridoma) and interleukin-3 (IL-3)-deprived LyD9 (a A unique biochemical feature of apoptotic cells includes Q3 2014 2015 20 0118
murine haematopoietic progenitor cell line) died by the fragmentation of DNA into oligonucleosomal pieces.
classical type of programmed cell death. Assuming that Apoptosis is often associated with programmed cell death, Source: Loncar Investments

common biochemical pathways might be involved in the
deaths of 2B4.11 and LyD9, we isolated the PD-l_ gene,

of actinomycin D or cycloheximide on the death of nerve
growth factor (NGF)-deprived rat neurons (Martin et al.,
1988) and that of mouse thymocytes induced by gluco-
corticoids (Cohen and Duke, 1984) or by an endogenous
superantigen (MacDonald and Lees, 1990). These facts
suggest that at least a few genes, if not specific ones, must
be expressed to cause programmed cell death.

The term “apoptosis’, on the other hand, is used to describe
the morphological characteristics of a class of cell death
(Kerr and Harmon, 1991). In cells dying by apoptosis, the
chromatin condenses around the periphery of the nucleus,
while the mitochondria and other organelles are unaffected.

but some of the cells undergoing programmed death
apparently do not show the characteristic features of
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Invention: Commercialization:
IL-6 discovery (1988) Global sales of anti-IL6 therapy
(2005-2017)

REPORTS
Cloning and expression of the human interleukin-6 (BSF-2/IFN beta

2,500.00
2) receptor

K Yamasaki, T Taga, Y Hirata, H Yawata, Y Kawanishi, B Seed, T Taniguchi, T Hirano, T Kishimoto
+ See all authors and affiliations 2,000.00

Science 12 Aug 1988:
Vol. 241, Issue 4867, pp. 825-828
DOI: 10.1126/science. 3136546

1,500.00

Article Info & Metrics elLetters PDF
1,000.00
Abstract
Interleukin-6 (IL-6/BSF-2/IFN beta 2) is a multifunctional cytokine that regulates the T
growth and differentiation of various tissues, and is known particularly for its role in the ‘
immune response and acute phase reactions. A complementary DNA encoding the
human IL-6 receptor (IL-6-R) has now been isolated. The IL-6-R consists of 468 amino — o .

acids, including a signal peptide of approximately 19 amino acids and a domain of " 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

M Europe M Japan WUSA m Other



> 20,000,000 antibodies associated with 4 viruses

Antibody sequences from Literature
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Summary of Part 2

e Collectively, antibodies exhibit a kind of “Immune intelligence”
e They distinguish between “self” and “non-self”
e They “learn” to bind to non-self molecules with high affinity and specificity
« They remember non-self antigens for the future

« High-throughput antibody sequencing marks the beginning ot a
new era

e There is room for new bioinformatics methods in this exciting field

« Hopefully, we can reduce the time to discover new therapeutic
antibodies



Part3: High-throughput Antibody Modeling



Repertoire Builder: Our latest software

Input:
Up to 10,000 Antibody
or sequences

Output:

Up to 10,000
receptor
models

D Schritt, et al. Molecular Systems Design & Engineering 4 (4), (2019)



Repertoire Builder utiluzes MAFF T-ASH-derived feature-
vectors

A. Extend template MSA

Extended MSA
Template MSA xtende

q ememeee
Query sequence fy e . Y ]
g ta mememen [> 12 vrrem e —

13 t
B. Nine template MSAs C. CDR template MSAs binned by length
Template MSAs are extended for the six CCRs CDR template MSAs are constructed for each CDR of a
(L1,L2,L3 H1,H2, H3), two frameworks (H, L) given length, resulting in gap-free query-template alignments
and one H-L framework orientation (nine MSAs in COR regions
total) Query sequence
h2 CDRI THOEH CDR3

CDR2

L Framework H Framewaork

B
D. Rank templates
Query-template alignments Feature vectors ( Scores
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The score for each template is computed .
by the dot product between an alignment- Weight vector (w) The nine templates are assembled

derived feature vector and a MSA-specific | | | " | | | " | ” into a coherent structure and side-
weight-vector chains remodeled where needed



Repertoire Builder Accuracy
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Summary of Part 3

« Antibody modeling can be very fast (seconds per model)

e Other very fast modeling methods include Lyra (Marcatili et al.) and
AbodyBuilder (Deane et al.)

e Repertoire Builder appears to be both fast and acurate

« Sometimes huge computational cost (e.g. MD-based methods) are
not better than fast methods (i.e. using structural templates)

« However, making lots of antibody structural models is not enough

 We need to find a way to use this information to understand
antibody function

e This means: predicting antigen specificity




Part 4: Antibody Clustering



InterClone: Pairwise classifier with hierarchical clustering
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Input * %
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\ g

Output
0.00001

(Probability of targeting
same epitope)

Xu et al Molecular Systems Design & Engineering 4 (4), (2019)



InterClone Al similar to facial recognition




CATNAP : HIV-1 antibody library
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Cocluster CANTAP dataset by InterClone
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Sensitivity

InterClone pertformance on CATNAP antibodies
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Application: Clustering Ab sequences from different donors

Donors of interest Receptor models Receptor Clusters

f e vyrr

T oene NYVT. @ m I Biaelding &l

B oesie yoyy- ||

Healthy Control @? I I

o YYYT
T s T

Z. Xu, et al. MSDE 4 (4), (2019); Xu et al (in prep)



InterClone: Can identify multi-donor antibody clusters for various viruses

Study Donors Virus All sequences >95% unique PMID
Galson-2015 9 HBV 2606446 928203 26844287
Galson-2016 9 HBV 2752578 1032531 27312086

Ellebedy-2016 Influenza 91994 88734 27525369
Galson-2016 38 Influenza 3429402 786850 27849037
Gupta-2019 3 Influenza 1073957 447555 28179494

Jian-2020 5 Influenza 981706 596052 lead contact
Ellebedy-2020 3 Influenza 26747 25321 32661157
Wu-2011 2 HIV 184672 103342 21835983
Zhu-2012 1 HIV 9442 3661 23024643
Liao-2013 1 HIV 34722 26937 23552890
Zhu-2013 1 HIV 31677 18828 24106303
Schanz-2014 1 HIV 32555 11711 25364977
Wu-2015 1 HIV 354952 212059 25865483
DoriaRose-2015 1 HIV 168151 64601 24590074
Zhou-2015 4 HIV 27201 20800 26004070
Huang-2016 1 HIV 58156 8663 27851912
Setliff-2018 6 HIV 372666 307208 29861170

Waltari-2018 4 HIV 200125 70742 29632541

Armita-2019 7 HIV 992831 819080 31209469
Jia-2020 2 HIV 91026 70716 32315598
Roskin-2020 87 HIV 747891 546069 31959979
Jian-2020 11 Covid19 485034 279924 collaboration
Nielsen-2020 5 Covid19 155297 143813 32941787
Galson-2020 19 Covid19 745666 673499
Montague-2020 19 Covid19 72148 49050
Christoph-2020 37 Covid19 264906 248281 32668194
Cervantes-2020 10 Covid19 121728 100335 32669287
Wen-2020 10 Covid19 6207 6092 32377375
Zhang-2020 13 Covid19 8229 7788 32788748

Xu et al (in prep)

HBV Influenza
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Antibodies in HIV-specific clusters are indeed HIV antigen specific

2 HIV+ donors
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Antibdies in HBV-specific clusters are also HBsAg antigen specific

18 HBV donors
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Enrichment of
HA positive antibodies (%)

Antibodies in influenza-specific clusters are HA antigen specific
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Summary of Part 4

* Antibody models can be clustered using sequence and structural features
e InterClone was trained on existing 3D structural data

« Antibody clusters enriched in sequences in donors of interest (i.e.
vOilrus ?r \(/jaccine exposed) compared to healthy controls can be
identitie

e These virus-specific clusters are indeed enriched in antigen-
specific antibodies

e InterClone thus appears to perform well on new sequence data

e To our knowledge, InterCone is the only method avilable for
antibody clustering

« Web server coming soon!



Part b: Antibody-antigen docking



\dapt: Docking antibody-antigen pairs from sequenc
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Key features of Adapt

Adapt allows input of sequences and builds structures for docking internally
Adapt uses epitope and paratope prediction to help docking
Adapt uses two docking engines (Piper and Hex)
Adapt uses several customized machine-learning models:
1. Epitope prediction
2. Paratope prediction
3. Piper Scoring
4. Hex scoring
5. Scoring clusters of Piper and hex models (poses)



Validating Adapt

567-fold Leave-one-out cross validation Holdout test (100 different Ab-Ag pairs)

For each Ab-Ag pair: Train the machine learning models on all other (567
Test the complete Adapt pipeline on 100 different p

Remove one pair (test pair)

Report the average ROC AUC
Train the machine learning models on all other (566) pairs

Test the complete Adapt pipeline on the one test pair (ROC AUC)

Report the average ROC AUC



Paratope and Epitope Prediction validation

567-fold Leave-one-out cross validatiohloldout test (100 different Ab-Ag pairs)
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Reperesentative Examples
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Docking validation: Holdout Set
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Summary of part b

Performance of leave-one-out cross validation was very similar to
performance on holdout set (means that we did not over-fit the
models)

The main point of Adaptis to throw away bad models; in this regard,
we were successful

The “success rate” (defined as the ability to produce at least one
“True” pose) of using Adapt was 8-9% higher than that of Piper or Hex
alone

Limitations of Adapt: right now it is slow (hours)

The quality of the final models is “acceptable” but not “high”

Web server coming soon!
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