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Brief Bio

• 1998: PhD in computational chemistry, Columbia Univ.
• 1998-2003: Software developer, Schrodinger Inc.
• 2003-2008 : Researcher, Osaka Univ., Inst. for Protein research
• 2008-2014: Associate Prof., Immunology Frontier Research Center
• 2014-2016 : Professor, Kyoto Univ., Inst. for Virus Research
• 2016: Co-founder, KOTAI Biotechnologies
• 2016-present: Professor, Osaka Univ., Research Inst. for Microbial Diseases



Part 1: A personal story

How our lab became interested in antibodies
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In 2013 my lab was invited to join a contest

The second antibody modeling 
assessment:
“To assess the state of the art in 
antibody 3D modeling”



Participants prepare 3D 
models and send back 
to organizers

Organizers compare the 
3D models to x-ray 
crystal structures and 
assess errors

Organizers send 
sequences of
antibodies to 
participants 

Organization of the Contest 



The participants

• Accerlys Inc
• Chemical Computer Group (CCG)
• Schrodinger, Inc.
• Jeff Gray's lab (John Hopkins University)
• Macromoltek
• Astellas Pharma/Osaka University
• Prediction of ImmunoGlobulin Structure (PIGS).



The organizers

Scripps Research

Big Pharma Academics



Our team

Hiroki Shirai 
Astellas Pharma

Haruki Nakamura 
Inst. Protein Research
Osaka Univ.

D. Standley
IFReC
Osaka Univ.

Experienced in antibody modeling



Our strategy

Choose best 
model

Hiroki Shirai: Initial 
analysis 
of BCR sequence

D. Standley: Fragment assembly 
(Fast, but risky) 

Nakamura Lab: Molecular dynamics 
(Slow, but reliable)

We wrote the software in 1 month!
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Results: Our models had the lowest error!

Lower is Better!
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It turned out the fast/risky approach was just as accurate as the slow approach

AMA-II BCR 
sequences

Submitted to the contest (weeks of CPU)

Our fast method (minutes of CPU)
Refined fast method (1 hour of CPU)



Kazuo Yamashita
CEO KOTAI Bio

“we?” We should make a 
company!



Summary of part 1
• The AMA-II contest provided an important lesson
• Our lab had no experience working on antibody modeling
• Nevertheless, we were able to make an important breakthrough
• Why did we do so well on antibody modeling?
• Possibly, because were not antibody ‘experts’ we tried something very 

naïve
• It just happened to work. 
• It’s important to try different projects in your career
• Don’t become too attached to one project for your whole life
• Some projects “just happen to work” most projects don’t!



Part 2: Background on antibodies



How does nature make antibodies?

Antigen

1 week

B cells with unique B cell receptors (BCRs)

One or more of these BCRs will bind to the antigen of interes

Antibodies are the soluble form of BCRs



Each antibody variable region (Fab) is composed of 
two chains (heavy and light)

Fab

HL

Ab



A Fab contains 6 complementarity-determining regions (CDRs)

L1 H3L2L3 H2H1

These six CDR loops give each 
antibody its unque antigen-binding 
characteristics

HL



Antigen binding surfaces (paratopes) are defined by CDRs

L1 H3L2L3 H2 H1



CDR sequences are generated randomly 

This is a continuous process ocurring 
throughout our lives



The number of unique antibodies in humans is greater than the number 
grains of sand on earth: ~1019



Let’s take a closer look at B cell receptors (Antibodies)



Antibody binding sites (epitopes) can be 
anywhere on an antigen surface

Different antibodies targeting 
influenza hemagglutinin



L1 L2 L3

H1 H2 H3

Epitopes can be anywhere (e.g. Hemagglutinin)Paratopes correspond to CDRs



B cells that bind self-molecules are killed 

95% of B cells are killed 
because of self-

reactivity



Surviving B cells that bind non-self molecules 
undergo further optimization

Mutation

Selection

Non-self
Antigen

Affinity

Mutation



Some cells become long-lived memory B cells

Mutation

Selection

Non-self
Antigen

Affinity

Memory



B cell sequencing is an emerging technology
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This technology has created new era

Era of too little data Era of too much data



Traditional therapeutic antibody discovery takes time

• Identify target antigen
• Develop antibodies in animals
• Select several monoclonal antibodies
• Humanize (i.e. graft CDRs from animal framework onto human framework)
• Optimize antigen binding etc.
• Evaluate safety
• Evaluate efficacy



Two important examples from Japanese academia 

Tasuku Honjo, Kyoto University
Discovered PD-1 cancer checkpoint therapy

Tadamitsu Kishimoto, Osaka University
Discovered IL6-based autoimmune therapy



Invention:
PD-1 discovery (1992)

Commercialization:
Global sales of checkpoint-therapies 
(2014-2018)



Invention:
IL-6 discovery (1988)

Commercialization:
Global sales of anti-IL6 therapy 
(2005-2017)



> 20,000,000 antibodies associated with 4 viruses

Antibody sequences from Literature 
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Summary of Part 2

• Collectively, antibodies exhibit a kind of  “Immune intelligence” 
• They distinguish between “self” and “non-self”
• They “learn” to bind to non-self molecules with high affinity and specificity
• They remember non-self antigens for the future

• High-throughput antibody sequencing marks the beginning of a 
new era

• There is room for new bioinformatics methods in this exciting field
• Hopefully, we can reduce the time to discover new therapeutic 

antibodies



Part3: High-throughput  Antibody Modeling



Output:
Up to 10,000 
receptor 
models

Repertoire Builder: Our latest software 

Input:
Up to 10,000 Antibody 
or sequences

30min

D Schritt, et al. Molecular Systems Design & Engineering 4 (4), (2019)



Repertoire Builder utiluzes MAFFT-ASH-derived feature-
vectors



Repertoire Builder Accuracy



Summary of Part 3
• Antibody modeling can be very fast (seconds per model)

• Other very fast modeling methods include Lyra (Marcatili et al.) and 
AbodyBuilder (Deane et al.)

• Repertoire Builder appears to be both fast and acurate
• Sometimes huge computational cost (e.g. MD-based methods) are 

not better than fast methods (i.e. using structural templates)
• However, making lots of antibody structural models is not enough
• We need to find a way to use this information to understand 

antibody function
• This means: predicting antigen specificity



Part 4: Antibody Clustering
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InterClone: Pairwise classifier with hierarchical clustering

Xu et al Molecular Systems Design & Engineering 4 (4), (2019)



InterClone AI similar to facial recognition
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InterClone performance on CATNAP antibodies

AI has seen both Abs AI has seen one Ab AI hasn’t seen either Ab



Application: Clustering Ab sequences from different donors

B

A

C

Donors of interest Receptor models

Healthy Control

Receptor Clusters

InterClone

Z. Xu, et al. MSDE 4 (4), (2019); Xu et al (in prep)

Docking etc.



HBV Influenza

HIV COVID-19

Study Donors Virus All sequences >95% unique PMID

Galson-2015 9 HBV 2606446 928203 26844287

Galson-2016 9 HBV 2752578 1032531 27312086

Ellebedy-2016 8 Influenza 91994 88734 27525369

Galson-2016 38 Influenza 3429402 786850 27849037

Gupta-2019 3 Influenza 1073957 447555 28179494

Jian-2020 5 Influenza 981706 596052 lead contact

Ellebedy-2020 3 Influenza 26747 25321 32661157

Wu-2011 2 HIV 184672 103342 21835983

Zhu-2012 1 HIV 9442 3661 23024643

Liao-2013 1 HIV 34722 26937 23552890

Zhu-2013 1 HIV 31677 18828 24106303

Schanz-2014 1 HIV 32555 11711 25364977

Wu-2015 1 HIV 354952 212059 25865483

DoriaRose-2015 1 HIV 168151 64601 24590074

Zhou-2015 4 HIV 27201 20800 26004070

Huang-2016 1 HIV 58156 8663 27851912

Setliff-2018 6 HIV 372666 307208 29861170

Waltari-2018 4 HIV 200125 70742 29632541

Armita-2019 7 HIV 992831 819080 31209469

Jia-2020 2 HIV 91026 70716 32315598

Roskin-2020 87 HIV 747891 546069 31959979

Jian-2020 11 Covid19 485034 279924 collaboration

Nielsen-2020 5 Covid19 155297 143813 32941787

Galson-2020 19 Covid19 745666 673499

Montague-2020 19 Covid19 72148 49050

Christoph-2020 37 Covid19 264906 248281 32668194

Cervantes-2020 10 Covid19 121728 100335 32669287

Wen-2020 10 Covid19 6207 6092 32377375

Zhang-2020 13 Covid19 8229 7788 32788748

InterClone:  Can identify multi-donor antibody clusters for various viruses

Xu et al (in prep)

Large circles mean large 
clusters

Dark circles mean virus-specific 
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Antibodies in HIV-specific clusters are indeed HIV antigen specific
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18 HBV donors

Antibdies in HBV-specific clusters are also HBsAg antigen specific
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Antibodies in influenza-specific clusters are HA antigen specific



RBD BSA
S1 BSA

S1+S2 BSA

Antibodies in COVID19-specific clusters are Spike-protein antigen specific

Xu et al (in prep)



Summary of Part 4
• Antibody models can be clustered using sequence and structural features
• InterClone was trained on existing 3D structural data 
• Antibody clusters enriched in sequences in donors of interest (i.e. 

virus or vaccine exposed) compared to healthy controls can be 
identified

• These virus-specific clusters are indeed enriched in antigen-
specific antibodies

• InterClone thus appears to perform well on new sequence data
• To our knowledge, InterCone is the only method avilable for 

antibody clustering 
• Web server coming soon!



Part 5: Antibody-antigen docking
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Adapt: Docking antibody-antigen pairs from sequenc



Key features of Adapt

• Adapt allows input of sequences and builds structures for docking internally
• Adapt uses epitope and paratope prediction to help docking
• Adapt uses two docking engines (Piper and Hex)
• Adapt uses several customized machine-learning models:

1. Epitope prediction
2. Paratope prediction
3. Piper Scoring
4. Hex scoring
5. Scoring clusters of Piper and hex models (poses)



Validating Adapt

567-fold Leave-one-out cross validation

For each Ab-Ag pair:

Remove one pair (test pair)

Train the machine learning models on all other (566) pairs

Test the complete Adapt pipeline on the one test pair (ROC AUC)

Report the average ROC AUC

Holdout test (100 different Ab-Ag pairs)

Train the machine learning models on all other (567  

Test the complete Adapt pipeline on 100 different p

Report the average ROC AUC



Paratope and Epitope Prediction validation

Paratope Epitope

RO
C 

AU
C

Paratope Epitope

RO
C 

AU
C

567-fold Leave-one-out cross validationHoldout test (100 different Ab-Ag pairs)



Native
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Epipred 2

Epipred 3

Adapt
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ROC AUC
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True RanksPiper Docking Piper Scoring

Hex Docking Hex Scoring

Top Poses

Docking validation: Leave-one-Out Cross Validation



True Ranks

Piper Docking Piper Scoring

Hex Docking Hex Scoring

Top Poses

Docking validation: Holdout Set



Summary of part 5

• Performance of leave-one-out cross validation was very similar to 
performance on holdout set (means that we did not over-fit the 
models)

• The main point of Adapt is to throw away bad models; in this regard, 
we were successful

• The “success rate” (defined as the ability to produce at least one 
“True” pose) of using Adapt was 8-9% higher than that of Piper or Hex 
alone 

• Limitations of Adapt: right now it is slow (hours) 
• The quality of the final models is “acceptable” but not “high”
• Web server coming soon!
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