生体分子動力学シミュレーションの 基礎と応用

Hisashi OKUMURA Exploratory Research Center on Life and Living Systems Institute for Molecular Science The Graduate University for Advanced Studies Japan

奥村久士

自然科学研究機構 生命創成探究センター 分子科学研究所 計算科学研究センター 総合研究大学院大学 構造分子科学専攻 Books to read 参考書

Computer Simulation of Liquids M. P. Allen, D. J. Tildesley Oxford Science Publications (2017/8)

Understanding Molecular Simulation (Third Edition) From Algorithms to Applications Daan Frenkel and Berend Smit Academic Press (2023/7)

分子シミュレーション —古典系から量子系手法まで 上田顕 裳華房(2003/10)

コンピュータ・シミュレーションの基礎(第2版): 分子のミクロな性質を解明するために 岡崎 進,吉井 範行 化学同人(2011/7)

「分子動力学シミュレーション」で動画検索

https://www.youtube.com/watch?v=6B3BE7-iIPk

内容

1. 生体分子動力学シミュレーションの基礎

- 2. 温度・圧力の制御
- 3. タンパク質の分子動力学シミュレーションの例

内容

1. 生体分子動力学シミュレーションの基礎

- 2. 温度・圧力の制御
- 3. タンパク質の分子動力学シミュレーションの例

二体問題 力学

2つの質点の運動を解く問題。 独立な2つの一体問題として解くことができる。

ニュートンの運動方程式 $F_i = m_i \ddot{r}_i$

太字はベクトル $F = \vec{F}$ 上付き点・は時間微分 $\dot{r} = \frac{d\mathbf{r}}{dt}, \quad \ddot{r} = \frac{d^2\mathbf{r}}{dt^2}$

二体問題 力学

2つの質点の運動を解く問題。 独立な2つの一体問題として解くことができる。

ニュートンの運動方程式 $F_i = m_i \dot{r}_i$ $F_{12} = m_1 \ddot{r}_1 \quad F_{21} = m_2 \ddot{r}_2$ $m_{1}\ddot{r}_{1} + m_{2}\ddot{r}_{2} = F_{12} + F_{21} \qquad \ddot{r}_{12} = \ddot{r}_{1} - \ddot{r}_{2} = \frac{F_{12}}{m_{1}} - \frac{F_{21}}{m_{2}} = \left(\frac{1}{m_{1}} + \frac{1}{m_{2}}\right)F_{12}$ $(m_1 + m_2)\ddot{r}_{\text{flue}} = 0$ $\mu \ddot{r}_{12} = F_{12}$ $\mathbf{r}_{\pm \hat{\mathbf{L}}} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2}$ 換算質量 $\mu = \frac{1}{\left(\frac{1}{m_1} + \frac{1}{m_2}\right)}$ 重心は慣性運動

三体問題 力学

3つの質点の運動を解く問題。 特殊な条件の場合しか解析的に解くことはできない。

ニュートンの運動方程式 $F_i = m_i \ddot{r}_i$

計算機を使って原子、分子の動きを 時々刻々数値的に解く。

計算機を使って原子、分子の動きを時々刻々数値的に解く。

アルゴン Ar

- *N* = 108
- $V = 5.0 \times 5.0 \times 5.0$
- T₀*= 0.1, 1.0 (LJ単位系)
- Lennard-Jones model

低温 *T*₀ = 12 K

周期境界条件

一方向から粒子が飛び出たら反対側から箱の中に戻す。

アミノ酸が多数つながったひも状の分子

有坂文雄著「バイオサイエンスのための蛋白質科学入門」 裳華房 2004 より

タンパク質の構造(形)の例 アルファヘリックス ベータヘアピン

アルファヘリックス + ベータヘアピン

Example of a biomolecule: alanine dipeptide 生体分子の例:アラニンジペプチド

生体分子のポテンシャルエネルギー

$$E = E_{\text{bond}} + E_{\text{angle}} + E_{\text{dihedral}} + E_{\text{elec}} + E_{\text{LJ}}$$

$$E_{\text{bond}} = \sum_{\text{bond}} k_r (r - r_0)^2$$

$$E_{\text{angle}} = \sum_{\text{angle}} k_{\theta} (\theta - \theta_0)^2$$

$$E_{\text{diheadral}} = \sum_{\text{diheadral}} \frac{v_n}{2} \{1 + \cos(n\phi - \gamma)\}$$

$$AMBER, CHARMM,$$
OPLS, etc.

生体分子のポテンシャルエネルギー

$$E = E_{\text{bond}} + E_{\text{angle}} + E_{\text{dihedral}} + E_{\text{elec}} + E_{\text{LJ}}$$

AMBER, CHARMM, OPLS, etc.

T. Sakaguchi and H. Okumura: J. Phys. Soc. Jpn. 82 (2013) 034001.

MDシミュレーションの手順

- 1. 初期条件 座標と運動量の初期条件を設定する。
- 2. 平衡化

温度(時には圧力も)を制御しながら、平衡状態に至らせる。

3. サンプリング 長いMDシミュレーションを実行し、多くの微視的状態を サンプルする。統計サンサンブル平均を計算する。 <u>
平衡化</u>
→ サンプリング
equilibration
→ sampling hysical quantity 物理 時間 time

ハミルトニアン $H = \sum_{i} \frac{p_{i}^{2}}{2m_{i}} + V(q)$

正準方程式
$$\dot{\boldsymbol{q}}_i = \frac{\partial H}{\partial \boldsymbol{p}_i}, \quad \dot{\boldsymbol{p}}_i = -\frac{\partial H}{\partial \boldsymbol{q}_i}$$

物理量 Z(q, p)の時間変化
$$\frac{dZ}{dt} = \left[\sum_{i} \left(\frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q_{i}} - \frac{\partial H}{\partial q_{i}} \frac{\partial}{\partial p_{i}}\right)\right] Z = D_{H}Z$$
時間発展演算子

形式解 $Z(t+\Delta t) = e^{D_H \Delta t} Z(t)$ シンプレクティック分子動力学法 時間発展演算子の分割 ハミルトニアンがH = K(p) + V(q)と分割される場合 $D_{H} = \sum_{i} \left(\frac{\partial H}{\partial \boldsymbol{p}_{i}} \frac{\partial}{\partial \boldsymbol{q}_{i}} - \frac{\partial H}{\partial \boldsymbol{q}_{i}} \frac{\partial}{\partial \boldsymbol{p}_{i}} \right) = \sum_{i} \left(\frac{\partial K}{\partial \boldsymbol{p}_{i}} \frac{\partial}{\partial \boldsymbol{q}_{i}} - \frac{\partial V}{\partial \boldsymbol{q}_{i}} \frac{\partial}{\partial \boldsymbol{p}_{i}} \right) = \boldsymbol{D}_{K} + \boldsymbol{D}_{V}$ 近似: $e^{D_H\Delta t} = e^{D_V \frac{\Delta t}{2}} e^{D_K \Delta t} e^{D_V \frac{\Delta t}{2}} + O(\Delta t^3)$ $e^{D_V \Delta t} = 1 + D_V \Delta t + \frac{1}{2} D_V^2 \Delta t^2 + \cdots = e^{D_K \Delta t} = 1 + D_K \Delta t + \frac{1}{2} D_K^2 \Delta t^2 + \cdots$ $D_V \boldsymbol{p}_i = -\frac{\partial V}{\partial \boldsymbol{q}_i} \frac{\partial}{\partial \boldsymbol{p}_i} \boldsymbol{p}_i = \boldsymbol{F}_i \qquad D_K \boldsymbol{q}_i = \frac{\partial K}{\partial \boldsymbol{p}_i} \frac{\partial}{\partial \boldsymbol{q}_i} \boldsymbol{q}_i = \frac{\boldsymbol{p}_i}{m_i}$ $D_{K}^{2}\boldsymbol{q}_{i} = \frac{\partial K}{\partial \boldsymbol{p}_{i}} \frac{\partial}{\partial \boldsymbol{q}_{i}} \frac{\boldsymbol{p}_{i}}{m_{i}} = 0 \qquad K = \sum_{i} \frac{\boldsymbol{p}_{i}^{2}}{2m_{i}}$ $D_V^2 \boldsymbol{p}_i = -\frac{\partial V}{\partial \boldsymbol{q}_i} \frac{\partial}{\partial \boldsymbol{p}_i} \boldsymbol{F}_i = 0$ $D_V \boldsymbol{q}_i = -\frac{\partial V}{\partial \boldsymbol{q}} \frac{\partial}{\partial \boldsymbol{p}} \boldsymbol{q}_i = 0$ $D_{K}\boldsymbol{p}_{i} = \frac{\partial K}{\partial \boldsymbol{p}} \frac{\partial}{\partial \boldsymbol{q}} \boldsymbol{p}_{i} = 0$

シンプレクティック分子動力学法
近似:
$$e^{D_H\Delta t} = e^{D_V \frac{\Delta t}{2}} e^{D_K \Delta t} e^{D_V \frac{\Delta t}{2}} + O(\Delta t^3)$$

速度ベルレ法

$$e^{D_V \frac{\Delta t}{2}}$$
 operation: $p_i^{n+1/2} = p_i^n + F_i^n \frac{\Delta t}{2}$
 $e^{D_K \Delta t}$ operation: $q_i^{n+1} = q_i^n + \frac{p_i^{n+1/2}}{m_i} \Delta t$
 $e^{D_V \frac{\Delta t}{2}}$ operation: $p_i^{n+1} = p_i^{n+1/2} + F_i^{n+1} \frac{\Delta t}{2}$

影のハミルトニアン

$$\tilde{H} = H - \frac{1}{24} \sum_{i} \sum_{j} \left(\frac{\partial^{2} H}{\partial p_{i} \partial p_{j}} \frac{\partial H}{\partial q_{i}} \frac{\partial H}{\partial q_{j}} - 2 \frac{\partial^{2} H}{\partial q_{i} \partial q_{j}} \frac{\partial H}{\partial p_{i}} \frac{\partial H}{\partial p_{j}} \right) \Delta t^{2} + \cdots$$

$$H C \int V \langle R F \equiv \tilde{H} \rangle \delta F F F = 5.$$

シンプレクティック分子動力学法
近似:
$$e^{D_H\Delta t} = e^{D_K \frac{\Delta t}{2}} e^{D_V\Delta t} e^{D_K \frac{\Delta t}{2}} + O(\Delta t^3)$$

位置ベルレ法 $e^{D_{K}\frac{\Delta t}{2}}$ operation: $q_{i}^{n+1/2} = q_{i}^{n} + \frac{p_{i}^{n}}{m_{i}}\frac{\Delta t}{2}$ $e^{D_{V}}$ operation: $p_{i}^{n+1} = p_{i}^{n} + F_{i}^{n+1/2}\Delta t$ $e^{D_{K}\frac{\Delta t}{2}}$ operation: $q_{i}^{n+1} = q_{i}^{n+1/2} + \frac{p_{i}^{n+1}}{m_{i}}\frac{\Delta t}{2}$

影のハミルトニアン

$$\tilde{H} = H - \frac{1}{24} \sum_{i} \sum_{j} \left(\frac{\partial^{2} H}{\partial \boldsymbol{q}_{i} \partial \boldsymbol{q}_{j}} \frac{\partial H}{\partial \boldsymbol{p}_{i}} \frac{\partial H}{\partial \boldsymbol{p}_{j}} - 2 \frac{\partial^{2} H}{\partial \boldsymbol{p}_{i} \partial \boldsymbol{p}_{j}} \frac{\partial H}{\partial \boldsymbol{q}_{i}} \frac{\partial H}{\partial \boldsymbol{q}_{j}} \right) \Delta t^{2} + \cdots$$

$$H C 近 V 保存量 \tilde{H} が存在する.$$

シンプレクティック条件

・正準変換
$$\eta = \begin{pmatrix} q \\ p \end{pmatrix} \rightarrow \zeta = \begin{pmatrix} Q \\ P \end{pmatrix}, \quad \zeta = \zeta(\eta)$$

・ハミルトンの運動方程式
$$\dot{\eta} = J \frac{\partial H}{\partial \eta}, \quad \dot{\zeta} = J \frac{\partial H}{\partial \zeta}$$
 $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $M = \begin{pmatrix} \partial \zeta \\ \zeta \end{pmatrix}$

・ くの時間発展

$$\dot{\zeta}(\eta) = \frac{\partial \zeta}{\partial \eta} \dot{\eta} = M \dot{\eta} = M J \frac{\partial H}{\partial \eta} = M J \frac{\partial \zeta}{\partial \eta} \frac{\partial H}{\partial \zeta} = M J M^{\mathrm{T}} \frac{\partial H}{\partial \zeta}$$

・シンプレクティック条件
 ζ=ζ(η) が正準変換
 ⇔ MJM^T=J

誤差の評価

MDシミュレーションプログラムのデバッグにはエネル ギー保存則を使うのが便利。エネルギーの誤差ΔH の時間ステップ幅Δt依存性が積分法から予想される 次数になっているかチェックする。 ΔH~(Δt)^k もし次数kが予想通りなら力とエネルギーがコンシステ

ントに計算されている。

ローカルエラー 1ステップでの誤差 $\delta H = |H_{n+1} - H_n|$ $H_n \cdots n$ ステップ目でのハミルトニアンの値 ベルレ法では $\delta H = O((\Delta t)^3)$ グローバルエラー

時刻 t = 0 と後の固定した時刻 $t = n \Delta t$ とでの誤差 $\Delta H = |H(n \Delta t) - H(0)|$

 $n\Delta t$ を一定に保ちながら、 Δt を細かくする。(Δt に 反比例するようにnを増やす) 例えば、速度ベルレ法では $\Delta H \propto n\delta H$ = $nO((\Delta t)^3)$ = $O((\Delta t)^{-1})O((\Delta t)^3)$ = $O((\Delta t)^2)$

通常グローバルエラーの次数はローカルエラーよりも 1次低い。 $t = n\Delta t$ を一定に保ちながら、 Δt を細かくしてMDシミュレーションを行い、ハミルトニアンのグローバルエラー ΔH を調べる。 $\Delta H \ge \Delta t$ の対数を取り、傾きから誤差の次数を計算する。

∆t

内容

1. 生体分子動力学シミュレーションの基礎

2. 温度・圧力の制御

3. タンパク質の分子動力学シミュレーションの例

能勢修一教授 Prof. Shūichi Nosé (1951-2005)

能勢-Hoover 熱浴 Nosé-Hoover thermostat

$$\dot{\mathbf{r}}_{i} = \frac{\mathbf{p}_{i}}{m_{i}}$$
$$\dot{\mathbf{p}}_{i} = \mathbf{F}_{i} - \zeta \mathbf{p}_{i}$$
$$\dot{\zeta} = \frac{1}{Q} \left(\sum_{i} \frac{\mathbf{p}_{i}^{2}}{m_{i}} - 3NkT_{0} \right)$$

S. Nosé: Mol. Phys. **52** (1984) 255 S. Nosé: J. Chem. Phys. **81** (1984) 511

$$H_{NVT} = \sum_{i} \frac{p'_{i}^{2}}{2ms^{2}} + E(\mathbf{r}) + \frac{P_{s}^{2}}{2Q} + gkT_{0} \ln s$$

運動量と時間をスケール $p_{i} = \frac{p'_{i}}{s}, dt =$

仮想時間t'での運動方程式 ・・・正準方程式

実時間*t*での運動方程式 ・・・正準方程式ではない

 $\frac{dt'}{dt}$

瞬間温度を用いると

$$gkT(t) = \sum_{i} \frac{p_i^2}{m}$$

最後の式は以下のように書き換えられる。

$$\dot{\zeta} = \frac{gk}{Q} \{ T(t) - T_0 \}$$

フィードバックメカニズム

 $T(t) < T_0 \rightarrow \zeta$ 減少 $\rightarrow p$ 增加 $\rightarrow T(t)$ 増加

熱浴の質量

Q大 $\rightarrow \zeta$ のダイナミクスは遅くなる Q小 $\rightarrow \zeta$ のダイナミクスは速くなる

Lennard-Jones 流体 への応用

- 周期境界条件
- $N = 500, \rho = 0.8$
- $r_{\rm c} = 4.0$
- $T_0 = 1.0$
- T(t = 0) = 0.5
 Lennard-Jones単位系
 (ε = σ = 1).

$$u(r) = 4\varepsilon \left\{ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right\}$$

能勢-Hoover 熱浴における時間発展

物理量 A (r, p, ζ) の時間発展 $\dot{A}(r, p, \zeta) = \sum_{i} \dot{r}_{i} \cdot \frac{\partial A}{\partial r_{i}} + \sum_{i} \dot{p}_{i} \cdot \frac{\partial A}{\partial p_{i}} + \dot{\zeta} \cdot \frac{\partial A}{\partial \zeta}$

時間発展演算子(Liouville 演算子)

$$D = \sum_{i} \dot{\mathbf{r}}_{i} \cdot \frac{\partial}{\partial \mathbf{r}_{i}} + \sum_{i} \dot{\mathbf{p}}_{i} \cdot \frac{\partial}{\partial \mathbf{p}_{i}} + \dot{\zeta} \cdot \frac{\partial}{\partial \zeta}$$

運動方程式から

$$D = \sum_{i} \frac{\boldsymbol{p}_{i}}{m_{i}} \cdot \frac{\partial}{\partial \boldsymbol{r}_{i}} + \sum_{i} (\boldsymbol{F}_{i} - \zeta \boldsymbol{p}_{i}) \cdot \frac{\partial}{\partial \boldsymbol{p}_{i}} + \frac{1}{Q} \left(\sum_{i} \frac{\boldsymbol{p}_{i}^{2}}{m} - gkT_{0} \right) \cdot \frac{\partial}{\partial \zeta}$$

形式解 $\dot{A}(\boldsymbol{r},\boldsymbol{p},\boldsymbol{\zeta}) = DA$ $A(t + \Delta t) = e^{D\Delta t} A(t)$

時間発展演算子の分割

$$D = D_1 + D_2 + D_3$$

$$D_1 = \sum_i \frac{p_i}{m_i} \cdot \frac{\partial}{\partial r_i} + \frac{1}{Q} \left(\sum_i \frac{p_i^2}{m} - gkT_0 \right) \cdot \frac{\partial}{\partial \zeta}$$

$$D_2 = \sum_i F \cdot \frac{\partial}{\partial p_i}$$

$$D_3 = -\sum_i \zeta p_i \cdot \frac{\partial}{\partial p_i}$$

鈴木-Trotter 分割

Approximation:
$$e^{D\Delta t} = e^{D_3 \frac{\Delta t}{2}} e^{D_2 \frac{\Delta t}{2}} e^{D_1 \Delta t} e^{D_2 \frac{\Delta t}{2}} e^{D_3 \frac{\Delta t}{2}} + O(\Delta t^3)$$

D2 についても同様に

$$e^{D_2 \Delta t} \boldsymbol{p}_i = \boldsymbol{p}_i + \boldsymbol{F}_i \Delta t$$

 D_3 の演算については Δt の高次項がゼロにはならないが 公式

$$e^x = 1 + x + \frac{1}{2}x^2 + \cdots,$$

を用いると、以下の形になる

$$e^{D_{3}\Delta t}\boldsymbol{p}_{i} = \left\{1 + D_{3}\Delta t + \frac{1}{2!}D_{3}^{2}\Delta t^{2} + \cdots\right\}\boldsymbol{p}_{i}$$
$$= \boldsymbol{p}_{i}\left\{1 + \left(-\zeta\Delta t\right) + \frac{1}{2!}\left(-\zeta\Delta t\right)^{2} + \cdots\right\}$$
$$= \boldsymbol{p}_{i}e^{-\zeta\Delta t}$$

能勢-Hoover 熱浴の時間発展

$$p_{i} \leftarrow p_{i} \exp\left(-\zeta \frac{\Delta t}{2}\right)$$

$$p_{i} \leftarrow p_{i} + F_{i} \frac{\Delta t}{2}$$

$$r_{i} \leftarrow r_{i} + \frac{p_{i}}{m_{i}} \Delta t$$

$$\zeta \leftarrow \zeta + \frac{1}{Q} \left(\sum_{i} \frac{p_{i}^{2}}{m} - gkT_{0}\right)$$

$$p_{i} \leftarrow p_{i} + F_{i} \frac{\Delta t}{2}$$

$$p_{i} \leftarrow p_{i} \exp\left(-\zeta \frac{\Delta t}{2}\right)$$

 Δt

"←": プログラムにおける代入

G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, *Mol. Phys.*, **87**, 1117 (1996).

Andersenの方法

圧力浴 体積の変化

Andersen の方法

H. C. Andersen: J. Chem. Phys. 72 (1980) 2384

$$H_{NPH} = \sum_{i} \frac{\tilde{p}_{i}^{2}}{2m_{i}V^{\frac{2}{3}}} + E(V^{\frac{1}{3}}\tilde{r}) + \frac{P_{V}^{2}}{2M} + P_{0}V$$

座標と運動量のスケール $r_{i} = V^{\frac{1}{3}}\tilde{r}_{i}, \quad p_{i} = V^{-\frac{1}{3}}\tilde{p}_{i}$

正準方程式

フィードバック機構

 $P(t) < P_0 \rightarrow \ddot{V} < 0 \rightarrow P(t)$ が増える $P(t) > P_0 \rightarrow \ddot{V} > 0 \rightarrow P(t)$ が減る

ピストンの質量

M大 $\rightarrow V$ のダイナミクスは遅くなる。 M小 $\rightarrow V$ のダイナミクスは速くなる。

ハミルトニアン H は保存されるので H = 一定

平衡状態では体積の運動エネルギー *P_V²/2M* は H より はるかに小さい。

 $P_V^2/2M << H$ ゆえにエンタルピー H はほぼ一定: $H \equiv H_0 + P_0V \approx - D$ アンダーセンの方法は近似的に NPH 一定(定圧定エン タルピー)のアンサンブルを生成する

Andersen の方法における時間発展

物理量
$$A(\tilde{r}, \tilde{p}, V, P_V)$$
 の時間発展
 $\dot{A}(\tilde{r}, \tilde{p}, V, P_V) = \sum_i \dot{\tilde{r}}_i \cdot \frac{\partial A}{\partial \tilde{r}_i} + \sum_i \dot{\tilde{p}}_i \cdot \frac{\partial A}{\partial \tilde{p}_i} + \dot{V} \cdot \frac{\partial A}{\partial V} + \dot{P}_V \cdot \frac{\partial A}{\partial P_V},$
時間発展演算子 (Liouville 演算子)
 $D = \sum_i \dot{\tilde{r}}_i \cdot \frac{\partial}{\partial \tilde{r}_i} + \sum_i \dot{\tilde{p}}_i \cdot \frac{\partial}{\partial \tilde{p}_i} + \dot{V} \cdot \frac{\partial}{\partial V} + \dot{P}_V \cdot \frac{\partial}{\partial P_V},$
運動方程式より
 $D = \sum_i \frac{\tilde{p}_i}{m_i V^{\frac{2}{3}}} \cdot \frac{\partial}{\partial \tilde{r}_i} + V^{\frac{1}{3}} \sum_i F_i \cdot \frac{\partial}{\partial \tilde{p}_i} + \frac{P_V}{M} \cdot \frac{\partial}{\partial V} + \left\{ \frac{1}{3V} \left(\sum_i \frac{\tilde{p}_i^2}{m_i V^{\frac{2}{3}}} + \sum_i F_i \cdot r_i \right) - P_0 \right\} \frac{\partial}{\partial P_V},$

$$\dot{A}(\tilde{r}, \tilde{p}, V, P_V) = DA \qquad \longrightarrow \qquad \overset{\text{IVI}}{\longrightarrow} \qquad A(t + \Delta t) = e^{D\Delta t}A(t)$$

時間発展演算子の分割

$$D = D_{1} + D_{2} + D_{3}$$

$$D_{1} = \sum_{i} \frac{\tilde{p}_{i}}{m_{i}V^{\frac{2}{3}}} \cdot \frac{\partial}{\partial \tilde{r}_{i}} + \sum_{i} \frac{\tilde{p}_{i}^{2}}{3m_{i}V^{\frac{5}{3}}} \frac{\partial}{\partial P_{V}}$$

$$D_{2} = \frac{P_{V}}{M} \cdot \frac{\partial}{\partial V}$$

$$D_{3} = V^{\frac{1}{3}} \sum_{i} F_{i} \cdot \frac{\partial}{\partial \tilde{p}_{i}} + \left(\frac{1}{3V} \sum_{i} F_{i} \cdot r_{i} - P_{0}\right) \frac{\partial}{\partial P_{V}}$$

鈴木-Trotter 分割

近似:
$$e^{D\Delta t} = e^{D_3 \frac{\Delta t}{2}} e^{D_2 \frac{\Delta t}{2}} e^{D_1 \Delta t} e^{D_2 \frac{\Delta t}{2}} e^{D_3 \frac{\Delta t}{2}} + O(\Delta t^3)$$

例えば

$$e^{D_1\Delta t} = 1 + D_1\Delta t + \frac{1}{2}D_1^2\Delta t^2 + \cdots$$
 \longrightarrow
$$\begin{cases} e^{D_1\Delta t}\tilde{r}_i = \tilde{r}_i + \frac{\tilde{p}_i}{m_i V^{\frac{2}{3}}}\Delta t \\ e^{D_1\Delta t}P_V = P_V + \sum_i \frac{\tilde{p}_i^2}{3m_i V^{\frac{5}{3}}}\Delta t \end{cases}$$

Andersen の方法における時間発展

"←": プログラムにおける代入

温度・圧力の制御 定温定圧分布(*NPT*)

能勢・Andersenの方法

 $\dot{\boldsymbol{r}}_i = \frac{\boldsymbol{p}_i}{m_i} + \frac{V}{3V}\boldsymbol{r}_i$ $\dot{\boldsymbol{p}}_i = \boldsymbol{F}_i - \left(\frac{\dot{s}}{s} + \frac{\dot{V}}{3V}\right) \boldsymbol{p}_i$ $\dot{s} = s \frac{P_s}{O}$ $\dot{P}_{s} = \sum_{i} \frac{p_{i}^{2}}{m_{i}} - 3NkT_{0}$ 瞬間温度3NkT(t) $\dot{V} = s \frac{P_V}{V}$ M $\dot{P}_{V} = s \left\{ \frac{1}{3V} \left(\sum_{i} \frac{\boldsymbol{p}_{i}^{2}}{m_{i}} + \sum_{i} \boldsymbol{r}_{i} \cdot \boldsymbol{F}_{i} \right) - P_{0} \right\}$ 瞬間圧力 P(t)

内容

1. 生体分子動力学シミュレーションの基礎

- 2. 温度・圧力の制御
- 3. タンパク質の分子動力学シミュレーションの例

アミロイドーシス

タンパク質が間違った形にフォールディングし、 アミロイド線維を形成することにより引き起こされる病気.

・例:アルツハイマー病 認知症の1つ.脳の萎縮.老人斑

老人斑で見られるアミロイドβ ペプチドのアミロイド線維

Lührs et al., *Proc. Natl. Acad. Sci. USA* **102**, 17342 (2005) 32

Aβアミロイド線維の離合集散 のメカニズムを調べる ↓ 分子動力学シミュレーション

超音波によるアミロイドβ線維破壊の分子シミュレーション サインカーブ状の圧力

 $P_0 = 100$ MPa• Nosé-Hoover熱浴の質量 $\Delta P = 200$ MPaQ = 10 (kcal/mol) ps² $\tau = 1$ ns (⇔ 1 GHz)• Andersen 圧力浴の質量20個の初期速度 $M = 10^{-7}$ (kcal/mol) ps² /Å⁶

圧力が正の時は何も起きない。

気泡は通常、β2の疎水 性残基周辺で生成。

気泡中でもアミロイドは 形状保つ。

気泡が崩壊するとき、 水分子がβ1の親水性 残基に衝突し、アミロイ ドが破壊される。

H. Okumura and S. G. Itoh: J. Am. Chem. Soc. **136** (2014) 10549-10552

Proc. Natl. Acad. Sci. USA 106 (2009) 11119.

まとめ

生体分子動力学シミュレーションの基礎 分子動力学シミュレーションの概要 生体分子のモデル、力場 時間発展手法

- 2. 温度・圧力の制御
 能勢の方法、アンダーセンの方法
- タンパク質の分子動力学シミュレーションの例
 タンパク質凝集体のシミュレーション