「計算生命科学の基礎」~タンパク質から見る生命科学~ 2014/11/18 神戸大学

タンパク質の量子化学計算

日本大学松戸歯学部 福澤 薫

~タンパク質から見る生命科学~
【6】計算生命科学のための量子化学基礎(11月11日)
【7】タンパク質の量子化学計算(11月18日)
【8】分子動力学計算と生体高分子の機能解析:タンパク質の動的構造と機能(11月25日)
【9】分子動力学計算における拡張サンプリングシミュレーション(12月2日)
【10】タンパク質の生物学的機能と化学反応(12月9日)

講義内容

タンパク質の量子化学計算(11月18日)

- ▶ 計算構造生物学とフラグメント分子軌道(FMO)法
- ▶ 核内受容体と転写制御のメカニズム
- ▶ インフルエンザの感染・防御のメカニズム

創薬における計算生命科学:量子化学計算を中心に(1月20日)

- ➤ インシリコ創薬におけるFMO計算
- ▶ タンパク質ーリガンド結合性の評価
- ▶ 相互作用解析ツールとしてのFMO法
- ➤ FMO超分解能解析:結晶構造の精密化

量子化学計算による次世代計算構造生物学

FMO計算によって超並列スパコンの能力をフル活用

😡 2013ノーベル化学賞~ Karplus, Levitt, Warshel

複合化学系のマルチスケールモデルの開発

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/press.html

フラグメント分子軌道(FMO)法

FMO法とは?

- 1999年に北浦和夫教授(現神戸大学)により提案
- 巨大分子をフラグメントに分割し、部分エネルギーを集積 することで、系全体の高速電子状態計算を実現
- 相互作用解析に適している

インシリコ創薬におけるFMO計算

- タンパク質ーリガンド系全体の量子化学(電子状態)計算を高速・高 精度に実現
- エネルギー指標による、リガンドー残基間の相互作用の定量的評価
 ⇒ 水素結合、弱い分子間力(CH/π, π/πなど)
 - ⇒ 電荷移動(CT)
 - ⇒ 官能基単位、主鎖/側鎖ごとの評価が可能
- 電子密度解析
- 分子軌道(フロンティア軌道)解析

全体の電子状態が得られるので、構造生物学研究に向いている

FMO法の主な実装系

- 産総研 Fedorov、神戸大 北浦ら ⇒ GAMESS/FMO
- 長崎大 石川ら ⇒ PAICS
- 国立衛研 中野、立教大 望月ら(東大生研CISS)

⇒ ABINIT-MP/BioStation 純国産プログラム

ABINIT-MP/BioStation

- > ABINIT-MP: FMO計算専用エンジン
- » BioStation Viewer: ABINIT-MP専用GUIプログラム

```
配布形態:

東大公開版ダウンロード(無償)

<u>http://www.ciss.iis.u-tokyo.ac.jp/dl/index.php</u>

最新版は2014.7.25に公開済、

現在はHPCIプログラム(分野4)で開発を継続中

みずほ版MIZUHO/BioStation(有償)

独自機能(PIEDA等)および技術サポートつき
```

ABINIT-MPの開発に伴う応用系の発展

ABINIT-MPによるFMO計算の計算時間

300残基程度のタンパク質とリガンド(分子量~400)の複合体構造

計算レベル	特徴	計算機(PCクラスタ)	計算時間
MP2/6-31G	標準的に利用	R620/SB 192cores	1.5時間
MP2/6-31G*	6-31G*分極関数	R620/SB 192cores	7時間

50残基切り出しモデル

計算レベル	特徴	計算機(PC クラ スタ)	計算時間
FMO4-MP2/6-31G	FMO4多体展開	R620/SB 128cores	5.8時間
CD-FMO4-MP2/6- 31G	FMO4多体展開 CDAM高速化	R620/SB 128cores	3.2時間

- ▶ 最も実用的なのはMP2/6-31G
- ▶ HFはMPの3分の1程度
- ➤ CDAMによってFMO2-MP2は10倍加速、 FMO4-MP2は2倍の加速
- ▶ FMO3計算はFMO2の2倍、FMO4計算 では10倍のコスト増
 - ⇒ 現実的には切り出しモデルを利用、 CDAM高速化を併用

ER50 主鎖。側鎖分割@fennel

フラグメント分子軌道(FMO)法とエネルギー解析

◇北浦らが提案: CPL 313 (1999) 701

- ▶ フラグメントモノマー、ダイマー、トリマー・・・の電 子状態から全体を構築
- ▶ 周辺のフラグメントからの影響は、環境静電ポテ ンシャルとして取り込む。
- ▶ 原子数Nにほぼ比例する計算量で、数 kcal/mol 以内の全エネルギー誤差で、生体高分子の電子 状態や相互作用を計算

全エネルギー(FMO2):モノマーおよびダイマーのエネルギーから算出

 $E = \sum E'_{I} + \sum \Delta \tilde{E}_{IJ}$ IFIE解析の基本式

フラグメント間相互作用エネルギー(IFIE): $\Delta \widetilde{E}_{II} = (E'_{II} - E'_{I} - E'_{I}) + \operatorname{Tr}(\Delta \mathbf{P}^{II} \mathbf{V}^{II})$ $E'_{I} = E_{I} - \operatorname{Tr}(\mathbf{P}^{I}\mathbf{V}^{I}) \qquad E'_{II} = E_{II} - \operatorname{Tr}(\mathbf{P}^{II}\mathbf{V}^{II})$

分子内・分子間の相互作用を 定量的に解析できる

どうやって分子をフラグメントに分割するか?

- C-H間の原子間距離を1.09Åに固定したメタン分子の局在化軌道(sp³混成軌道に相当)を使った射影演算子を用いて、フラグメントの分子軌道をフラグメント内に局在化する。
- sp³炭素でフラグメントに分割
- sp²炭素やsp³ケイ素で分割することも可能

フラグメントのHartree-Fock-Roothaan方程式

$$\mathbf{F}^{X} \mathbf{C}^{X} = \mathbf{S}^{X} \mathbf{C}^{X} \boldsymbol{\varepsilon}^{X}$$
周囲のモノマーからの環境静電
 $\mathbf{F}^{X} = \mathbf{H}^{X} + \mathbf{G}^{X}$

$$H_{pq}^{X} = \mathbf{H}_{pq}^{\text{core } X} + \mathbf{V}_{pq}^{X} + \sum_{k} B_{k} \langle p | \theta_{k} \rangle \langle \theta_{k} | q \rangle ,$$

$$V_{pq}^{X} = \sum_{L \neq X} (u_{pq}^{L} + v_{pq}^{L})$$
MOをフラグメント内に局在化
させるためのシフト演算子。
 $B_{k}=10^{6}, \theta_{k}$ にはメタン分子(R_C, H=1.09Å)の局在化分子軌道
(LMO)を用いる。

FMO2法による分子の全エネルギーおよび全電子密度

$$E_{I} = E_{I}^{\text{elec}} + \sum_{\substack{A > B \\ A, B \in I}} \frac{Z_{A}Z_{B}}{|\mathbf{B} - \mathbf{A}|}$$
$$E_{IJ} = E_{IJ}^{\text{elec}} + \sum_{\substack{A > B \\ A, B \in IJ}} \frac{Z_{A}Z_{B}}{|\mathbf{B} - \mathbf{A}|}$$

$$E \cong \sum_{I>J} E_{IJ} - (N_f - 2) \sum_{I} E_{IJ}$$

$$\rho(\mathbf{r}) \cong \sum_{I>J} \rho_{IJ}(\mathbf{r}) - (N_f - 2) \sum_{I} \rho_{I}(\mathbf{r})$$

高速化のための近似

 環境静電ポテンシャル計算の高速化 esp-aoc近似 (Mulliken AO population)

$$v_{pq}^{L} \cong \sum_{r \in L} (\mathbf{P}^{L} \mathbf{S}^{L})_{rr} (pq, rr) \quad \text{for } R_{\min}(X, L) \ge L_{\text{aoc}}$$

esp-ptc近似 (Mulliken atomic charge)

点電荷近似

2電子積分のMulliken近似

$$v_{pq}^{L} \cong \sum_{A \in L} \left\langle p \left| \left(Q_{A} / |\mathbf{r} - \mathbf{A}| \right) \right| q \right\rangle \quad \text{for } R_{\min}(X, L) \ge L_{ptc}$$
$$Q_{A} = \sum_{r \in A} (\mathbf{P}^{L} \mathbf{S}^{L})_{rr}$$
$$\exists \mathbf{A}^{T} \mathbf{A}^{$$

FMO法計算の流れ

タンパク質・DNAのフラグメント分割

▶ アミノ酸を主鎖さらには側鎖に分割▶ DNAをヌクレオチド、もしくは塩基を別に分割

<u>タンパク質分割モデル</u>

(a)主鎖分割

(b)主鎖-側鎖分割

化合物をsp3炭素で分割することも可 (多体補正が必要)

FMO法と相互作用解析

<u>フラグメント間相互作用エネルギー(IFIE)</u> フラグメント単位の二体の相互作用解析 受容体ーリガンド、DNA、タンパクータンパク等の相互作用に広く利用

- ◆ 立体表示、2次元マップ(IFIE map)
- ◆ エネルギー成分分割法 PIEDA

$$E^{\text{FMO2}} = \sum_{I>J} E_{IJ} - (N-2)\sum_{I} E_{I} = \sum_{I} E'_{I} + \sum_{I>J} \Delta \widetilde{E}_{IJ}$$

<u>軌道相互作用解析</u>

CAFI(電荷移動・分極相互作用)、FILM(分散相互作用(CH/π, π/π))
 IFIEよりも詳細な、軌道レベルの相互作用解析

IFIE mapによるIFIEの網羅的表示と構造解析

I. Kurisaki, K. Fukuzawa et al., Biophys. Chem. 130, 1-9 (2007).

表現可能

α-helix

101 121 141 161 181 201 221 241 21 41 61 81 Fragment Number

電荷移動相互作用~CAFIによる解析

水素結合ネットワークの解析に役立つ

局在化MP2(LMP2)法に基づいたFILM解析

グリッドデータ解析

▶ 電子密度分布
 ▶ 静電ポテンシャルマップ
 ▶ フラグメントの分子軌道(MO)などを可視化

ER-リガンド結合による電子密度分布の変化

Crambinの電子密度(0.001e/Bohr³)の等値面上の 静電ポテンシャル

リガンド結合による電子的な変化、静電相互作用による分子認識の解釈などに役立つ

核内受容体と転写制御のメカニズム

> 受容体とリガンドの相互作用
 > ヘリックス12の役割
 > 転写共役因子との相互作用
 > DNAとの相互作用

核内受容体とは

<u>核内受容体(Nuclear Receptor; NR)</u>

- ER, GR, PR, AR, RAR, RXR, TR, VDRなどから核内受
 容体スーパーファミリーを形成(48種類)
- ▶ ステロイドホルモン、甲状腺ホルモン、ビタミンA,Dなどの 低分子量の脂溶性生理活性物質をリガンドとする
- リガンド依存的に転写を制御するリガンド誘導性転写制 御因子
- ▶ 生活習慣病や成人病を含むさまざまな疾患に関係している
- 核内受容体を介した特異的標的遺伝子群の発現調節 により、個体発生や器官形成また成体での標的器官の 機能維持など幅広い生命現象に重要な役割を果たす
- ➢ 医薬品標的分子の約2%を占める

核内受容体と転写制御のメカニズム

核内受容体による転写制御のメカニズム

核内受容体のドメイン構造と機能領域

LBDは核内受容体の様々な機能に重要な役割を果たしている

核内受容体の作用機構 I: リガンドとの相互作用

<u>エストロゲン受容体(ER)</u>

- ・ERは核内受容体スーパーファミリーの一種
- ・女性ホルモン(エストロゲン)の受容体タンパク質であり、恒常性の維持、生殖、 発生などに関わる
- 乳がん、子宮がん、骨粗しょう症等の疾病と関わっている重要な創薬ターゲット
 2つのサブタイプ(ERα, ERβ)が存在し、サブタイプ特異的薬剤も開発されている

リガンド結合ドメイン(LBD)

各アミノ酸残基とリガンドとの相互作用(IFIE)

- ▶ 水素結合ネットワークを形成する極性・荷電アミノ酸残基と強く相互作用する
- ▶ ER-ligand相互作用はリガンド周辺に局在化
- ▶ 全ての残基に対するIFIEを足し合わせるとリガンド結合エネルギー(∠E)が計算できる

周囲の疎水アミノ酸残基との相互作用(IFIE解析)

Attractive residues IFIE < -1kcal/mol

Repulsive residues IFIE > +1kcal/mol

・HF法では記述できない分散力の効果が大きい
 ・静電相互作用や水素結合の他に分散力に基づいたvan der Waals相互作用が重要
 ⇒ 電子相関の重要性

	HF	MP2
極性残基	-45.42	-63.31
疎水性残基	5.15	-37.77
合計	-40.26	-101.07

ER-リガンド間の電荷移動相互作用(CAFI)

CAFI:Configuration Analysis for Fragment Interaction

⇒ 電荷移動、分極相互作用に対する軌道レベルの相互作用解析

Mochizuki, Fukuzawa, Kato, et. al, Chem. Phys Lett., 410(2005) 247-253.

				0		
Glu353	0.000	-0.836	5.134	-78.749	-32.327	-19.173
His524	-0.836	0.000	0.066	0.557	-6.643	0.053
Leu387	5.134	0.066	0.000	-10.057	1.143	-4.935
Arg394	-78.749	0.557	-10.057	0.000	-9.055	-16.466
EST	-32.327	-6.643	1.143	-9.055	0.000	0.056
water	-19.173	0.053	-4.935	-16.466	0.056	0.000

Glu353 | His524 | Leu387 | Aro394

[kcal/mol]

water

EST

CAFI: CT / polarization То

IFIE: CT + electrostatic

		Glu353	His524	Leu387	Arg394	EST	water
	Glu353	-0.107	0.000	-0.001	-0.525	-19.792	-9.626
	His524	0.000	-0.295	0.000	0.000	-1.045	0.000
From -	Leu387	-0.001	0.000	-0.063	-0.067	-1.317	-4.281
	Arg394	-0.031	0.000	-0.013	-2.750	-0.633	-0.373
	EST	-0.870	-5.299	-0.432	-7.090	-3.168	-0.808
	water	-0.627	0.000	-1.685	-14.138	-0.355	-1.171

ER-リガンド間の水素結合 ネットワークとCT相互作用

Glu353 \rightarrow **EST**, **EST** \rightarrow **Arg394**, **His524**, water \rightarrow **Arg394**, **Glu353**, Leu387

水素結合による電荷移動相互作用~CAFI解析

 $\begin{array}{l} Glu353 \; n_o(\pi) \rightarrow EST \; \sigma^*_{\rm OH} \\ \text{relaxation energy= -0.0159} \end{array} \end{array}$

 $\frac{EST n_o(\sigma) \rightarrow Arg394 \sigma^*_{NH}}{relaxation energy= -0.0044}$

 $ESTn_o(\pi) \rightarrow His524\sigma^*_{NH}$ relaxation energy= - 0.0034

[HF/6-31G*]

 $\begin{array}{l} Glu353 \; n_{_{0}}(\sigma) \rightarrow EST \; \sigma^{*}_{\quad OH} \\ \text{relaxation energy= -0.0118} \end{array}$

 $\frac{EST \ n_o(\pi) \rightarrow Arg 394 \ \sigma^*_{NH}}{\text{relaxation energy= -0.0019}}$

 $\frac{ESTn_{0}(\sigma) \rightarrow His524\sigma^{*}_{NH}}{relaxation energy= -0.0026}$

Glu353→ ESTの電子供与、EST→ Arg394, His524の逆供与が起こっている 青-赤:hole orbital, 黄-緑:particle orbital

CH/π相互作用解析~CHPIとIFIE、FILM

▶ 梅沢、西尾らのCHPIプログラムを内蔵
 ▶ PDB立体構造から、分子内・分子間のCH/π相互作用を網羅的に検出
 ⇒ IFIE解析、FILM解析と組み合わせた利用が有効 FILM解析

リガンドとのIFIE [MP2/6-31G*] (in kcal/mol) Phe404: -5.1, Leu387: -3.7, Ala350: -3.3

Phe404 CH \Leftrightarrow EST π (-0.389)

Phe404 CH \Leftrightarrow EST π (-0.255)

Phe404 $\pi \Leftrightarrow \text{EST } \pi$ (-0.337) Ishikawa et. al., Theor. Chem. Acc. 118, 937-945 (2007).

ERとリガンドの相互作用:まとめ

リガンド結合ポケットにおけるリガンドとの相互作用:

IFIEによる相互作用エネルギー解析:

- いくつかの荷電、極性アミノ酸残基との間に水素結合ネットワークを形成しており、強い静電相互作用がある。
- 数多く存在する疎水性アミノ酸残基との間に多数の弱い静電相互作用および分散相互作用がある。
- 両者同程度の寄与によって安定な結合を形成する。特にGlu353とリ ガンドとの相互作用が主要(全相互作用エネルギーの1/3~1/4)

CAFI, FILMによる軌道相互作用解析:

水素結合を介した電荷移動相互作用のネットワークが形成されている。Glu353からリガンドへの電子供与、リガンドからArg394, His524 への電子逆供与が起こっている。

Ala350, Leu387, Phe404はCH/π相互作用をしている

核内受容体の作用機構 II: Helix12の役割

エストロゲン受容体のアゴニスト orアンタゴニスト結合時に おけるHelix12の相互作用解析と電荷移動

C. Watanabe, K. Fukuzawa, S. Tanaka et al., J. Phys. Chem. B 118, 4993–5009 (2014).

1. 17β-Estradiol (EST) 2. Diethylstilbestrol (DES)

H12とその他の部分との相互作用(IFIE解析)

静電ポテンシャル分布

1GWR(ERαLBD-WAT-EST: agonist)

(渡邉、日向寺ら)

▶Helix12は負に帯電

▶ER-main表面の正ポテ ンシャル部分(Lys362, Lys529周辺)が重要な 相互作用スポット

> アゴニストはLys529 アンタゴニストはLys362 を認識

ER-mainとHelix12と の相補的な関係!

ESP [au]

-0.2

0.2

Helix12の役割:まとめ

エストロゲン受容体のリガンド結合とHelix12の位置

C. Watanabe, K. Fukuzawa, S. Tanaka et al., J. Phys. Chem. B 118, 4993–5009 (2014).

- アゴニスト結合: Lys529との強い相互作用
- アンタゴニスト結合: Lys362との強い相互作用
 Helix12を除くERリガンド結合ドメインの静電ポテンシャル分布から、 Lys362とLys529の位置に正電荷スポットがあることがわかった。

レチノイドX受容体のリガンド結合とHelix12の関係

(M. Ito K. Fukuzawa, et al., J. Phys. Chem. B 112, 12081–12094 (2008)より)

 9cRA (アゴニスト) - Helix12結合ポケット - Helix12との間に疎水性ア ミノ酸残基を介した協同的な相互作用があることがわかった。

H12; helix 12····リガンド結合領域(LBD; ligand-binding domain)C末端に位置 LXXLL; LXXLL motif····コアクチベーター内のH12との直接的な接触部位^{†1}

> 転写促進能には、リガンド結合によるレセプターの構造変化 (H12の移動)と、それに伴うコアクチベーター獲得が必須!^{†2}

†1 Heery, D. M.; Kalkhoven, E.; Hoare, S.; Parker, M. G. *Nature* 1997, *387*, 733–736.
†2 Freedman, L. P. *Cell* 1999, *97*, 5–8.

実験的研究の背景

conserved hydrophobic and charged residues in H12

 ・核内レセプター群はH12内に保存された荷電残基と疎水性残基を持つ
 →ミューテーション実験によってH12内の保存された残基の変異により、転写 活性が低下する。変異の効果: E453K> E456K^{†1-4}

†1 Tone, Y.; Collingwood, T. N.; Adams, M.; Chatterjee, V. K. J. Biol. Chem. 1994, 229, 31157–31161.
†2 Collingwood, T.N. et al. *Proc. Natl. Acad. Sci. USA* 1997, 94, 248–253.
†3 Gurnell, M. et al. J. Biol. Chem. 2000, 275, 5754–5759.
†4 Andersin, T.; Väisänen, S.; Carlberg, C. Mol. Endocrinol. 2003, 17, 234–246.

9cRAとSRC1の結合による複合体の形成

 ΔE_{1-3} : energy difference, Δq_{1-3} : charge difference

H12とSRC1の相互作用

	H12 residue							
SRC1 residue ^b	Thr449	Phe450	Leu451	Met452	Glu453	Met454	Leu455	Glu456
Lys631	0.04	0.42	1.22	1.48	-49.16	0.19	1.83	-33.44
Ile632	1.91	-5.74	1.88	0.32	-27.16	0.52	0.68	-3.62
L Leu633	-0.18	-1.42	0.01	0.11	-27.58	-0.65	0.50	-2.40
X His634	-0.44	-2.29	-0.98	0.28	-51.70	-2.54	1.22	-28.87
X Arg635	0.85	-1.73	1.01	1.35	-39.38	0.07	1.51	-21.62
L Leu636	-0.06	-1.22	-0.04	0.04	-4.70	-0.14	0.16	-1.54
L Leu637	-0.01	-0.47	0.05	0.08	-4.18	-0.13	0.17	-1.46
Gln638	-0.01	-0.25	-0.06	0.05	-2.16	-0.08	0.11	-0.68
Total1 ^c	0.17	-7.13	0.05	1.86	-127.55	-3.40	3.56	-55.89
Total2 ^d	2.11							

Table 3. IFIEs between H12 and SRC1 residues^a

保存された疎水性残基Phe450と荷電残基Glu453は、それぞれ同じ性質の 他のアミノ酸残基よりもSRC1と強く相互作用し、SRC1を安定化!

- ➢ Glu453は静電相互作用(クーロンカ)によりSRC1を固定
- ▶ Phe450は疎水性相互作用(分散力の寄与が大)によりH12を固定

リガンドおよびリガンド結合ポケット内 の残基の電荷の変化が大 H12内の残基とH12に隣接している 残基およびSRC1内の残基とSRC1に 隣接している残基の電荷の変化が大

残基単位の電荷移動(E453K, E456K変異体)

○ : charge clamp

blue: positive, red: negative

E453K (MD 1 ns)

E456K (MD 1 ns)

E453Kでは、RXR(AF2C)からSRC1への電子供与がLys453によって阻害され、 E456Kでは、SRC1からRXRへの電子逆供与がLys284周辺で阻害されるため、 RXRからSRC1への電荷移動が減少する!

RXRと転写共役因子との相互作用:まとめ

- 1. RXRとコアクチベータSRC1の結合では、 H12とSRC1の相互作用が主要である。
- H12-SRC1相互作用のうち、特にH12内の保存された残基「Phe450とGlu453」との相互作用が強い。
- 3. RXRからSRC1への電荷移動も、主にH12と SRC1との間で起こっている。

 3. WTではのGlu453とLys284がRXR-SRC1間の電子供与-電子逆供与に関わっており、 E453K, E456K変異により電荷移動が阻害 されることがわかった。

H12は、リガンド結合とコアクチベータ結合との間の架け橋という 重要な役割を果たしている!

核内受容体と転写のメカニズム:まとめ

- 受容体ーリガンドの相互作用(ER)
- Helix12の役割(ER, RXR)
- 転写共役因子との相互作用(RXR)
- DNAとの相互作用(ER)

重要な幾つかの段階での分子認識の メカニズムを"電子レベル"で明らかに する試みに成功

インフルエンザの感染・防御のメカニズム

インフルエンザ ~迫る脅威~

間断なき新型の出現とパンデミック(大流行)の脅威

1918年: スペイン風邪(H1N1亜型)の世界的流行 6億人が感染, 4000-5000万人に上る死者 1957年: アジア風邪(H2N2亜型)の出現・流行 1968年: 香港風邪(H3N2亜型)の出現・流行 それぞれ死者100万人

2005年: H5N1亜型鳥インフルエンザウイルスのトリからヒト, さらに, ヒトからヒトへの感染が確認

2008年1月: 新型ウイルスでの死者100名超

2009年6月: WHOが新型ウイルス(ブタ由来H1N1亜型)によるパンデミックを宣言

2010年8月終息宣言までに、214以上の感染国と地域で 18,449人以上の死者が確認(現在は季節型に移行)

インフルエンザウイルスの構造

インフルエンザウイルスの構造:

- > ウイルスは膜に覆われた球状の構造
- > ウイルス遺伝子は8本の分節RNAからなる
- HAはウイルスの細胞侵入時に宿主細胞表面の
 シアル酸を認識し、細胞膜に結合する
- HAは抗原として中和抗体に認識される(抗原抗 体反応)

インフルエンザウイルスの変異:

- ▶ RNA(マイナス鎖)ウイルスである ⇒ 変異が容易
- ワクチンには抗原変異、薬剤には薬剤耐性を起こす
- 毎年流行を起こし、数年ごとに抗原性の違うウイ ルスが出現する
- > 2種類のウイルスが1つの細胞に同時に感染す ると遺伝子交雑が起こる

HA:ウイルスが感染する過程で重要 NA:増殖したウイルスが脱出する過程 で重要

インフルエンザウイルスの宿主への吸着と遊離

Neumann et. al, Nature 459, 931 (2009)より一部図利用

HAのシアル酸認識における宿主結合特異性

ブタ: α2-6結合 α2-3結合 ブタはα2-6結合とα2-3結合の両方を持つ

シアル酸結合は種特異的

新型ウイルス誕生のメカニズム

(a) ブタがトリ・ヒトウイルスに同時に感染することによるハイブリッド ウイルスの誕生、ヒトへの感染

(b)トリウイルスに感染したブタの体内でのウイルス変異によりヒト に感染

(野田、善田、河岡「新型インフルエンザウイルス襲来」別冊日経サ イエンス143より)

(1) HAタンパク質のシアル酸認識と宿主結合特異性 Iwata, Fukuzawa, Nakajima et al., Comp. Biol.Chem. 32, 198-211 (2008). 1968 H3 avian Receptor 結合サイト HΑ *3+3=6量体 HA:81残基 受容体SIA-GAL:60原子 *(172+318)×3=490**残基** *11948原子 α 2-3(avian) α2-6(human) Subtype Year Place Origin Receptor **PDB** H1N1 1RVX 1934 Puerto Rico Human Human 1RVZ Avian H1N1 1930 Iowa Swine Human 1RVT Avian 1RV0 H3N2 1963 Ukraine Avian Human 1MQN Avian 1MQM

HAと糖鎖レセプターとの相互作用

Program: ABINIT-MP Method: FMO-MP2/6-31G Fragmentation: each amino acid residue, each sugar

(1) 結合エネルギー

$$\Delta E = E_{complex} - \left(E_{HA} + E_{receptor} \right)$$

HA-糖鎖レセプターの結合エネルギー (kcal/mol)^[FMO-MP2/6-31G]

receptor	H3avianHA	H1humanHA	H1swineHA	H5avianHA
avian	-352.9	-293.3	-363.3	-299.2
human	-292.4	-335.9	-390.5	-283.9

ヒトウイルスはヒト受容体に、トリウイルスはトリ受容体に強く結合する ブタウイルスはヒト受容体に結合しやすい

H3 avian HAと糖鎖受容体の相互作用解析

(2) フラグメント間相互作用エネルギー(IFIE)

- 1. IFIE_{total} はAvianが大きい Avian : <u>-242.6 kcal/mol</u> Human : -158.1 kcal/mol H3 avian HAのReceptor結合特異性 : Human < Avian
- 2. Avian receptor とHuman receptorで は TYR98, SER137,ALA138, HIS183, GLU190, GLN226との相互作用に違 い

H1 human HAと糖鎖受容体の相互作用解析

IFIEs between Avian/Human receptors and the residues in the binding site of H1humanHA

⊿IFIEs; IFIEavian - IFIEhuman

 $(\angle IFIE = IFIE(avian) - IFIE(human))$

1. IFIE_{total}はHumanが大きい Avian : -175.3 kcal/mol Human : <u>-243.1 kcal/mol</u>

H1 human HAのReceptor結合特異性: Human>Avian

2. Avian receptor とHuman receptor LYS222, ASP225との相互作用に 違い

新型インフルエンザの対策に向けたFMO計算

2009年6月: WHOが新型ウイルス(ブタ由来H1N1亜型)によるパンデミックを宣言 とト 2009H1N1/pdm

Fukuzawa, Omagari, Nakajima, Nobusawa and Tanaka, Protein & Peptide Lett., 18, 530 (2011).

3種類のH1N1ウイルスについて、α2-6糖鎖との結合性を解析

- ▶ 新型ヒトウイルス: A/California/04/2009(2009/H1N1pdm)
- ブタウイルス: A/swine/Iowa/1930 (1930swine)
- 旧型ヒトウイルス: A/Puerto Rico/8/1934 (1934human)

H7N9トリからヒトへの感染@中国 2013

Anzaki, Watanabe, Fukuzawa, and Tanaka, J. Mol. Graph. Model., 53, 48-58 (2014).

2種類のH7型ウイルスについて、 α 2-6 および α 2-3糖鎖との結合性を解析

- ▶ (新型)ヒトウイルスH7N9: A/Anhui/1/2013
- ▶ トリウイルス: A/Turkey/Itary/214845/2002

同様の手法を用いて、ウイルスHAとシアロ糖鎖との結合親和性の評価 および相互作用に重要なアミノ酸残基を特定

依然として脅威のウイルス:高病原性H5N1トリインフルエンザ

(2) HAタンパク質の抗原抗体反応とウイルス変異予測

ウイルス変異予測のスキーム

Takematsu, Fukuzawa, Omagari et al., J. Phys. Chem. B 113, 4991-4994 (2009).

主流となる変異体ウイルスHAは、 以下の条件を満たすと考えられる

1. HA本来の機能を保持 ランダムーアミノ酸置換体の変異後 のHAの赤球吸着反応によってシア ル酸結合活性を判定

2. 抗体に認識されにくい性質をもつ
FMO計算から各アミノ酸と
抗体との相互作用の強さを
定量的に評価。
強い引力相互作用を持つ
残基=抗体から認識され
やすい残基
→変異が主流になりやすい
のではないか?

抗体と各アミノ酸残基の相互作用(IFIE sums)

HAタンパク質の抗原抗体反応とウイルス変異予測:まとめ

- HIS75は実験値が無かったが、計算による変異可能性が高かったため、 追実験により許容変異であることを確認
- 許容部位のうち, IFIE Sumの値から, THR65, ASN81の変異は他の許 容部位比べ変異しにくいと予想
- 自然界ではTHR83の変異が確認されている ⇒ フラグメント分割(BDA)
 の位置をCにすることで解決(Yoshioka et. al., TCA 130 (2011) 1197-1202)

残基名	許容/非許容	IFIE(kcal/mol)	変異可能性	変異有無	_
ILE62	許容	-15.1	高い	1977, 1995	_
ASP63	—	-201.5	高い	1972	_
THR65	許容	0.6	低い	なし	_
HIS75	許容	-5.2	高い	2002	두 追実験
VAL78	許容	-3.5	高い	1969	
ASN81	許容	-0.4	低い	なし	_
GLU82	許容	-104.4	高い	1987	_
THR83	許容	-4.9	高い	1973, 1989, 2002	← フラグメント分割
					を改良

インフルエンザウイルスの対策に向けて

国立感染症研究所や名古屋市大ウイルス学教室との共同研究を進行中

(1) ワクチン開発 シアル酸結合性の改良
 α 2-3結合を認識するようなアミノ酸変異の特定
 ⇒ 卵での培養の効率化

(2) ウイルス変異予測

FMO計算による抗原性予測

⇒ 薬剤耐性ウイルスへの対策

(3) 抗ウイルス薬の設計

より効率的にNAを阻害する新薬の設計 別のタンパク質を標的とした新薬の開発

現行インフルエンザワクチンの製造方法

講義内容

タンパク質の量子化学計算(11月18日)

- ▶ 計算構造生物学とフラグメント分子軌道(FMO)法
- ▶ 核内受容体と転写制御のメカニズム
- ▶ インフルエンザの感染・防御のメカニズム

⇒ IFIEや静電ポテンシャルマップなどを駆使することで、 メカニズム解明とともにウイルス変異などの「予測」ができるレベルに!

次回の講義 創薬における計算生命科学:量子化学計算を中心に(1月20日)

- ➤ インシリコ創薬におけるFMO計算
- ▶ タンパク質ーリガンド結合性の評価
- ▶ 相互作用解析ツールとしてのFMO法
- ➢ FMO超分解能解析:結晶構造の精密化

謝辞

神戸大学 田中成典、伊藤三香、吉岡彬生、竹松和友、岩田達則

国立衛研 中野達也

立教大学 望月祐志

みずほ情報総研 加藤昭史、渡辺尚貴、塚本貴志、加藤幸一郎

NEC 山本純一、坂倉耕太

産総研 古明地勇人

名古屋市立大学 中島捷久、尾曲克己

国立感染症研究所 信澤枝里

東京工業大学 渡邊寿雄

東海大学 日向寺祥子

理化学研究所 本間光貴、渡邊千鶴、沖山 佳生、渡邉博文

<u>プロジェクト</u>

JST-CREST「フラグメント分子軌道法による生体分子計算システムの開発」(H16-H21) 文部科学省「イノベーション基盤シミュレーションソフトウェアの研究開発」(H20-H24) 文部科学省HPCI戦略プログラム「分野4 次世代ものづくり」(H25-) 立教SFRプロジェクト(H22-H24, H26-)